Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
1.
Health Sci Rep ; 6(5): e1275, 2023 May.
Article in English | MEDLINE | ID: covidwho-2323923

ABSTRACT

Background and Aims: Saliva samples are less invasive and more convenient for patients than naso- and/or oropharynx swabs (NOS). However, there is no US Food and Drug Administration-approved severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) rapid antigen test kit, which can be useful in a prolonged pandemic to reduce transmission by allowing suspected individuals to self-sampling. We evaluated the performances of High sensitive AQ+ Rapid SARS-CoV-2 Antigen Test (AQ+ kit) using nasopharyngeal swabs (NPs) and saliva specimens from the same patients in laboratory conditions. Methods: The real-time reverse transcription-polymerase chain reaction (rRT-PCR) test result was used for screening the inrolled individuals and compared as the gold standard. NP and saliva samples were collected from 100 rRT-PCR positives and 100 negative individuals and tested with an AQ+ kit. Results: The AQ+ kit showed good performances in both NP and saliva samples with an overall accuracy of 98.5% and 94.0%, and sensitivity of 97.0% and 88.0%, respectively. In both cases, specificity was 100%. AQ+ kit performance with saliva was in the range of the World Health Organization recommended value. Conclusion: xOur findings indicate that the saliva specimen can be used as an alternative and less invasive to NPs for quick and reliable SARS-CoV-2 antigen detection.

2.
Health Sci Rep ; 6(4): e1213, 2023 Apr.
Article in English | MEDLINE | ID: covidwho-2300667

ABSTRACT

Background and Aims: The coronavirus disease 2019 (COVID-19) has brought serious threats to public health worldwide. Nasopharyngeal, nasal swabs, and saliva specimens are used to detect severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, limited data are available on the performance of less invasive nasal swab for testing COVID-19. This study aimed to compare the diagnostic performance of nasal swabs with nasopharyngeal swabs using real-time reverse transcription polymerase chain reaction (RT-PCR) considering viral load, onset of symptoms, and disease severity. Methods: A total of 449 suspected COVIDCOVID-19 individuals were recruited. Both nasopharyngeal and nasal swabs were collected from the same individual. Viral RNA was extracted and tested by real-time RT-PCR. Metadata were collected using structured questionnaire and analyzed by SPSS and MedCalc software. Results: The overall sensitivity of the nasopharyngeal swab was 96.6%, and the nasal swab was 83.4%. The sensitivity of nasal swabs was more than 97.7% for low and moderate C t values. Moreover, the performance of nasal swab was very high (>87%) for hospitalized patients and at the later stage >7 days of onset of symptoms. Conclusion: Less invasive nasal swab sampling with adequate sensitivity can be used as an alternative to nasopharyngeal swabs for the detection of SARS-CoV-2 by real-time RT-PCR.

4.
Am J Trop Med Hyg ; 107(4): 845-849, 2022 10 12.
Article in English | MEDLINE | ID: covidwho-2265832

ABSTRACT

Early detection of SARS-CoV-2 infection is crucial to prevent its spread. This study aimed to document test sensitivity/specificity, correlation with cycle threshold value from polymerase chain reaction (PCR), fitness-for-use in different populations and settings, and user perspectives that could inform large-scale implementation. In this study, we evaluated the performance of a rapid antigen detection test, BD Veritor, and compared this (and another rapid test, Standard Q) against reverse transcription PCR (RT-PCR) in terms of sensitivity and specificity in 130 symptomatic and 130 asymptomatic adults. In addition, we evaluated the suitability and ease of use of the BD Veritor test in a subsample of study participants (n = 42) and implementers (n = 5). At 95% confidence interval, the sensitivity of the BD Veritor and Standard Q test were 70% and 63% in symptomatic and 87% and 73% in asymptomatic individuals, respectively, regarding positive SARS-CoV-2 RT-PCR results. Overall, the BD Veritor test was 78% sensitive and 99.5% specific compared with RT-PCR irrespective of the cycle threshold. This warrants large field evaluation as well as use of the rapid antigen test for quick assessment of SARS-CoV-2 for containment of epidemics in the country.


Subject(s)
COVID-19 , SARS-CoV-2 , Adult , Antigens, Viral , Bangladesh/epidemiology , COVID-19/diagnosis , COVID-19 Testing , Humans , Sensitivity and Specificity
5.
Microbiol Resour Announc ; : e0095022, 2022 Dec 06.
Article in English | MEDLINE | ID: covidwho-2231048

ABSTRACT

We announce the coding-complete genome sequences of 23 severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron strains obtained from Bangladeshi individuals. The Oxford Nanopore Technologies sequencing platform was utilized to generate the genomic data, deploying ARTIC Network-based amplicon sequencing.

6.
Curr Opin Environ Sci Health ; 27: 100334, 2022 Jun.
Article in English | MEDLINE | ID: covidwho-2230777

ABSTRACT

The ongoing pandemic of the coronavirus disease 2019 (COVID-19) is a public health crisis of global concern. The progression of the COVID-19 pandemic has been monitored in the first place by testing symptomatic individuals for SARS-CoV-2 virus in the respiratory samples. Concurrently, wastewater carries feces, urine, and sputum that potentially contains SARS-CoV-2 intact virus or partially damaged viral genetic materials excreted by infected individuals. This brings significant opportunities for understanding the infection dynamics by environmental surveillance. It has advantages for the country, especially in densely populated areas where individual clinical testing is difficult. However, there are several challenges including: 1) establishing a sampling plan and schedule that is representative of the various catchment populations 2) development and validation of standardized protocols for the laboratory analysis 3) understanding hydraulic flows and virus transport in complex wastewater drainage systems and 4) collaborative efforts from government agencies, NGOs, public health units and academia.

7.
Sci Total Environ ; 867: 161424, 2023 Apr 01.
Article in English | MEDLINE | ID: covidwho-2165840

ABSTRACT

The detection of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) RNA in wastewater can be used as an indicator of the presence of SARS-CoV-2 infection in specific catchment areas. We conducted a hospital-based study to explore wastewater management in healthcare facilities and analyzed SARS-CoV-2 RNA in the hospital wastewater in Dhaka city during the Coronavirus disease (COVID-19) outbreak between September 2020-January 2021. We selected three COVID-hospitals, two non-COVID-hospitals, and one non-COVID-hospital with COVID wards, conducted spot-checks of the sanitation systems (i.e., toilets, drainage, and septic-tank), and collected 90 untreated wastewater effluent samples (68 from COVID and 22 from non-COVID hospitals). E. coli was detected using a membrane filtration technique and reported as colony forming unit (CFU). SARS-CoV-2 RNA was detected using the iTaq Universal Probes One-Step kit for RT-qPCR amplification of the SARS-CoV-2 ORF1ab and N gene targets and quantified for SARS-CoV-2 genome equivalent copies (GEC) per mL of sample. None of the six hospitals had a primary wastewater treatment facility; two COVID hospitals had functional septic tanks, and the rest of the hospitals had either broken onsite systems or no containment of wastewater. Overall, 100 % of wastewater samples were positive with a high concentration of E. coli (mean = 7.0 log10 CFU/100 mL). Overall, 67 % (60/90) samples were positive for SARS-CoV-2. The highest SARS-CoV-2 concentrations (median: 141 GEC/mL; range: 13-18,214) were detected in wastewater from COVID-hospitals, and in non-COVID-hospitals, the median SARS-CoV-2 concentration was 108 GEC/mL (range: 30-1829). Our results indicate that high concentrations of E. coli and SARS-CoV-2 were discharged through the hospital wastewater (both COVID and non-COVID) without treatment into the ambient water bodies. Although there is no evidence for transmission of SARS-CoV-2 via wastewater, this study highlights the significant risk posed by wastewater from health care facilities in Dhaka for the many other diseases that are spread via faecal oral route. Hospitals in low-income settings could function as sentinel sites to monitor outbreaks through wastewater-based epidemiological surveillance systems. Hospitals should aim to adopt the appropriate wastewater treatment technologies to reduce the discharge of pathogens into the environment and mitigate environmental exposures.


Subject(s)
COVID-19 , Humans , COVID-19/epidemiology , SARS-CoV-2 , Wastewater , RNA, Viral , Sanitation , Bangladesh/epidemiology , Escherichia coli , Hospitals
8.
Vaccines (Basel) ; 10(12)2022 Dec 02.
Article in English | MEDLINE | ID: covidwho-2143806

ABSTRACT

BACKGROUND: From May to December 2021, Bangladesh experienced a major surge in the Delta variant of SARS-CoV-2. The earlier rollout of several vaccines offered the opportunity to evaluate vaccine effectiveness against this variant. METHODS: A prospective, test-negative case-control study was conducted in five large hospitals in Dhaka between September and December 2021. The subjects were patients of at least 18 years of age who presented themselves for care, suffering COVID-like symptoms of less than 10 days' duration. The cases had PCR-confirmed infections with SARS-CoV-2, and up to 4 PCR test-negative controls were matched to each case, according to hospital, date of presentation, and age. Vaccine protection was assessed as being the association between the receipt of a complete course of vaccine and the occurrence of SARS-CoV-2 disease, with symptoms beginning at least 14 days after the final vaccine dose. RESULTS: In total, 313 cases were matched to 1196 controls. The genotyping of case isolates revealed 99.6% to be the Delta variant. Receipt of any vaccine was associated with 12% (95% CI: -21 to 37, p = 0.423) protection against all episodes of SARS-CoV-2. Among the three vaccines for which protection was evaluable (Moderna (mRNA-1273); Sinopharm (Vero Cell-Inactivated); Serum Institute of India (ChAdOx1 nCoV-19)), only the Moderna vaccine was associated with significant protection (64%; 95% CI: 10 to 86, p = 0.029). Protection by the receipt of any vaccine against severe disease was 85% (95% CI: 27 to 97, p = 0.019), with protection estimates of 75% to 100% for the three vaccines. CONCLUSIONS: Vaccine protection against COVID-19 disease of any severity caused by the Delta variant was modest in magnitude and significant for only one of the three evaluable vaccines. In contrast, protection against severe disease was high in magnitude and consistent for all three vaccines. Because our findings are not in complete accord with evaluations of the same vaccines in more affluent settings, our study underscores the need for country-level COVID-19 vaccine evaluations in developing countries.

9.
Heliyon ; 8(10): e11043, 2022 Oct.
Article in English | MEDLINE | ID: covidwho-2113687

ABSTRACT

Epidemiological data of specific respiratory pathogens from the pre-COVID-19 period are essential to determine the effects of the COVID-19 pandemic on other respiratory infections. In this study, we revealed the pre-COVID-19 molecular epidemiology of respiratory syncytial virus (RSV) among children in Bangladesh. We tested 3170 samples collected from 2008 to 2012 for a panel of respiratory viruses; RSV, human metapneumovirus (hMPV), human parainfluenza viruses (hPIV) 1, 2, 3, and adenovirus. Five hundred fifty-five samples (17.5 %) were positive for RSV, including 2.5% having co-infections with other viruses. Genotypic characterization of RSV showed that RSV-A (82%) contributed more acute respiratory infections than RSV-B (18%). Clinical features were similar with RSV-A and RSV-B infections. However, children with RSV-B were more likely to have upper respiratory infections (URI) (10% vs. 29%, p = 0.03). Among RSV-A cases, hospitalization was higher for ON1 cases (25%, ON1 vs. 8%, NA1, p = 0.04), whereas the recovery without a disability was higher among the NA1 cases (56%, ON1 vs. 88%, NA1, p = 0.02). The time to the most recent common ancestor (TMRCA) for RSV in Bangladesh was 1949 for RSV-A and 1944 for RSV-B. This study revealed the genotypic diversity and evolutionary relatedness of RSV strains in Bangladesh and provided pre-COVID molecular epidemiology data to understand better the COVID-19 impact on upcoming RSV epidemiology in Bangladesh.

10.
Current opinion in environmental science & health ; 27:100334-100334, 2022.
Article in English | EuropePMC | ID: covidwho-1787212

ABSTRACT

The ongoing pandemic of the coronavirus disease 2019 (COVID-19) is a public health crisis of global concern. The progression of the COVID-19 pandemic has been monitored in the first place by testing symptomatic individuals for SARS-CoV-2 virus in the respiratory samples. Concurrently, wastewater carries feces, urine, and sputum that potentially contains SARS-CoV-2 intact virus or partially damaged viral genetic materials excreted by infected individuals. This brings significant opportunities for understanding the infection dynamics by environmental surveillance. It has advantages for the country, especially in densely populated areas where individual clinical testing is difficult. However, there are several challenges including: 1) establishing a sampling plan and schedule that is representative of the various catchment populations 2) development and validation of standardized protocols for the laboratory analysis 3) understanding hydraulic flows and virus transport in complex wastewater drainage systems and 4) collaborative efforts from government agencies, NGOs, public health units and academia. Graphical Image 1

11.
Microbiol Resour Announc ; 11(4): e0011922, 2022 Apr 21.
Article in English | MEDLINE | ID: covidwho-1759297

ABSTRACT

We report the coding-complete genome sequences of 25 severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sublineage B.1.1.529 Omicron strains obtained from Bangladeshi individuals in samples collected between December 2021 and January 2022. Genomic data were generated by Nanopore sequencing using the amplicon sequencing approach developed by the ARTIC Network.

12.
Sci Rep ; 12(1): 1438, 2022 01 26.
Article in English | MEDLINE | ID: covidwho-1655618

ABSTRACT

The protection against emerging SARS-CoV-2 variants by pre-existing antibodies elicited due to the current vaccination or natural infection is a global concern. We aimed to investigate the rate of SARS-CoV-2 infection and its clinical features among infection-naïve, infected, vaccinated, and post-infection-vaccinated individuals. A cohort was designed among icddr,b staff registered for COVID-19 testing by real-time reverse transcriptase-polymerase chain reaction (rRT-PCR). Reinfection cases were confirmed by whole-genome sequencing. From 19 March 2020 to 31 March 2021, 1644 (mean age, 38.4 years and 57% male) participants were enrolled; where 1080 (65.7%) were tested negative and added to the negative cohort. The positive cohort included 750 positive patients (564 from baseline and 186 from negative cohort follow-up), of whom 27.6% were hospitalized and 2.5% died. Among hospitalized patients, 45.9% had severe to critical disease and 42.5% required oxygen support. Hypertension and diabetes mellitus were found significantly higher among the hospitalised patients compared to out-patients; risk ratio 1.3 and 1.6 respectively. The risk of infection among positive cohort was 80.2% lower than negative cohort (95% CI 72.6-85.7%; p < 0.001). Genome sequences showed that genetically distinct SARS-CoV-2 strains were responsible for reinfections. Naturally infected populations were less likely to be reinfected by SARS-CoV-2 than the infection-naïve and vaccinated individuals. Although, reinfected individuals did not suffer severe disease, a remarkable proportion of naturally infected or vaccinated individuals were (re)-infected by the emerging variants.


Subject(s)
COVID-19/pathology , Reinfection/epidemiology , Adult , COVID-19/complications , COVID-19/virology , Cohort Studies , Diabetes Complications/pathology , Female , Humans , Hypertension/complications , Male , Middle Aged , RNA, Viral/analysis , RNA, Viral/metabolism , Reinfection/diagnosis , Reinfection/virology , Risk , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , SARS-CoV-2/physiology , Severity of Illness Index , Vaccination/statistics & numerical data
13.
Front Microbiol ; 12: 792514, 2021.
Article in English | MEDLINE | ID: covidwho-1581270

ABSTRACT

Background: The emergence of novel variants has been a great deal of international concern since the recently published data suggest that previous infections with SARS-CoV-2 may not protect an individual from new variants. We report a patient had two distinct episodes of COVID-19 with different variants of SARS-CoV-2. Methods: The nasopharyngeal samples collected from the two episodes were subjected to whole-genome sequencing and comparative genome analysis. Results: The first infection presented with mild symptoms, while the second infection presented with severe outcomes which occurred 74 days after the patient recovered from the first episode. He had elevated C-reactive protein, ferritin, and bilateral consolidation as a sign of acute infection. Genome analysis revealed that the strains from the first and second episodes belonged to two distinct Nexstrain clades 20B and 20I and Pangolin lineages B.1.1.25 and B.1.1.7, respectively. A total of 36 mutations were observed in the episode-2 strain when compared with the reference strain Wuhan-Hu-1. Among them, eight mutations were identified in the receptor-binding domain (RBD). Conclusion: Our findings concern whether the immunity acquired by natural infection or mass vaccination could confer adequate protection against the constantly evolving SARS-CoV-2. Therefore, continuous monitoring of genetic variations of SARS-CoV-2 strains is crucial for interventions such as vaccine and drug designs, treatment using monoclonal antibodies, and patient management.

14.
Viruses ; 14(1)2021 12 30.
Article in English | MEDLINE | ID: covidwho-1576960

ABSTRACT

Canine coronavirus (CCoV) is widespread among the dog population and causes gastrointestinal disorders, and even fatal cases. As the zoonotic transmission of viruses from animals to humans has become a worldwide concern nowadays, it is necessary to screen free-roaming dogs for their common pathogens due to their frequent interaction with humans. We conducted a cross-sectional study to detect and characterize the known and novel Corona, Filo, Flavi, and Paramyxoviruses in free-roaming dogs in Bangladesh. Between 2009-10 and 2016-17, we collected swab samples from 69 dogs from four districts of Bangladesh, tested using RT-PCR and sequenced. None of the samples were positive for Filo, Flavi, and Paramyxoviruses. Only three samples (4.3%; 95% CI: 0.9-12.2) tested positive for Canine Coronavirus (CCoV). The CCoV strains identified were branched with strains of genotype CCoV-II with distinct distances. They are closely related to CCoVs from the UK, China, and other CoVs isolated from different species, which suggests genetic recombination and interspecies transmission of CCoVs. These findings indicate that CCoV is circulating in dogs of Bangladesh. Hence, we recommend future studies on epidemiology and genetic characterization with full-genome sequencing of emerging coronaviruses in companion animals in Bangladesh.


Subject(s)
Coronavirus Infections/veterinary , Coronavirus, Canine/genetics , Coronavirus, Canine/isolation & purification , Dog Diseases/epidemiology , Animals , Bangladesh/epidemiology , Coronavirus Infections/epidemiology , Coronavirus Infections/virology , Coronavirus, Canine/classification , Cross-Sectional Studies , Dog Diseases/virology , Dogs , Female , Genotype , Male , Phylogeny , Viral Proteins/genetics
15.
J Clin Lab Anal ; 36(2): e24203, 2022 Feb.
Article in English | MEDLINE | ID: covidwho-1589068

ABSTRACT

BACKGROUND: Globally, real-time reverse transcription-polymerase chain reaction (rRT-PCR) is the reference detection technique for SARS-CoV-2, which is expensive, time consuming, and requires trained laboratory personnel. Thus, a cost-effective, rapid antigen test is urgently needed. This study evaluated the performance of the rapid antigen tests (RATs) for SARS-CoV-2 compared with rRT-PCR, considering different influencing factors. METHODS: We enrolled a total of 214 symptomatic individuals with known COVID-19 status using rRT-PCR. We collected and tested paired nasopharyngeal (NP) and nasal swab (NS) specimens (collected from same individual) using rRT-PCR and RATs (InTec and SD Biosensor). We assessed the performance of RATs considering specimen types, viral load, the onset of symptoms, and presenting symptoms. RESULTS: We included 214 paired specimens (112 NP and 100 NS SARS-CoV-2 rRT-PCR positive) to the analysis. For NP specimens, the average sensitivity, specificity, and accuracy of the RATs were 87.5%, 98.6%, and 92.8%, respectively, when compared with rRT-PCR. While for NS, the overall kit performance was slightly lower than that of NP (sensitivity 79.0%, specificity 96.1%, and accuracy 88.3%). We observed a progressive decline in the performance of RATs with increased Ct values (decreased viral load). Moreover, the RAT sensitivity using NP specimens decreased over the time of the onset of symptoms. CONCLUSION: The RATs showed strong performance under field conditions and fulfilled the minimum performance limit for rapid antigen detection kits recommended by World Health Organization. The best performance of the RATs can be achieved within the first week of the onset of symptoms with high viral load.


Subject(s)
Antigens, Viral/analysis , COVID-19 Serological Testing , COVID-19/diagnosis , Adolescent , Adult , Aged , Aged, 80 and over , COVID-19 Serological Testing/methods , COVID-19 Serological Testing/standards , COVID-19 Serological Testing/statistics & numerical data , Child , Child, Preschool , Female , Humans , Infant , Male , Middle Aged , Nasopharynx/virology , Reagent Kits, Diagnostic/virology , SARS-CoV-2/isolation & purification , Sensitivity and Specificity , Time Factors , Viral Load , Young Adult
16.
Int J Infect Dis ; 114: 105-111, 2022 Jan.
Article in English | MEDLINE | ID: covidwho-1587637

ABSTRACT

OBJECTIVES: The democratization of diagnostics is one of the key challenges towards containing the transmission of coronavirus disease 2019 (COVID-19) around the globe. The operational complexities of existing PCR-based methods, including sample transfer to advanced central laboratories with expensive equipment, limit their use in resource-limited settings. However, with the advent of isothermal technologies, the detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is possible at decentralized facilities. METHODS: In this study, two recombinase-based isothermal techniques, reverse transcription recombinase polymerase amplification (RT-RPA) and reverse transcription recombinase-aided amplification (RT-RAA), were evaluated for the detection of SARS-CoV-2 in clinical samples. A total of 76 real-time reverse transcription PCR (real-time RT-PCR) confirmed COVID-19 cases and 100 negative controls were evaluated to determine the diagnostic performance of the isothermal methods. RESULTS: This investigation revealed equally promising diagnostic accuracy of the two methods, with a sensitivity of 76.32% (95% confidence interval 65.18-85.32%) when the target genes were RdRP and ORF1ab for RT-RPA and RT-RAA, respectively; the combination of N and RdRP in RT-RPA augmented the accuracy of the assay at a sensitivity of 85.53% (95% confidence interval 75.58-92.55%). Furthermore, high specificity was observed for each of the methods, ranging from 94.00% to 98.00% (95% confidence interval 87.40-9.76%). CONCLUSIONS: Considering the diagnostic accuracies, both RT-RPA and RT-RAA appear to be suitable assays for point-of-need deployment for the detection of the pathogen, understanding its epidemiology, case management, and curbing transmission.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Nucleic Acid Amplification Techniques , RNA, Viral/genetics , Recombinases/metabolism , Reverse Transcription , Sensitivity and Specificity
17.
BMJ Open ; 11(12): e055169, 2021 12 02.
Article in English | MEDLINE | ID: covidwho-1550964

ABSTRACT

OBJECTIVES: To establish a hospital-based platform to explore the epidemiological and clinical characteristics of patients screened for COVID-19. DESIGN: Hospital-based surveillance. SETTING: This study was conducted in four selected hospitals in Bangladesh during 10 June-31 August 2020. PARTICIPANTS: In total, 2345 patients of all age (68% male) attending the outpatient and inpatient departments of surveillance hospitals with any one or more of the following symptoms within last 7 days: fever, cough, sore throat and respiratory distress. OUTCOME MEASURES: The outcome measures were COVID-19 positivity and mortality rate among enrolled patients. Pearson's χ2 test was used to compare the categorical variables (sign/symptoms, comorbidities, admission status and COVID-19 test results). Regression analysis was performed to determine the association between potential risk factors and death. RESULTS: COVID-19 was detected among 922 (39%) enrolled patients. It was more common in outpatients with a peak positivity in second week of July (112, 54%). The median age of the confirmed COVID-19 cases was 38 years (IQR: 30-50), 654 (71%) were male and 83 (9%) were healthcare workers. Cough (615, 67%) was the most common symptom, followed by fever (493, 53%). Patients with diabetes were more likely to get COVID-19 than patients without diabetes (48% vs 38%; OR: 1.5; 95% CI: 1.2 to 1.9). The death rate among COVID-19 positive was 2.3%, n=21. Death was associated with age ≥60 years (adjusted OR (AOR): 13.9; 95% CI: 5.5 to 34), shortness of breath (AOR: 9.7; 95% CI: 3.0 to 30), comorbidity (AOR: 4.8; 95% CI: 1.1 to 21.7), smoking history (AOR: 2.2, 95% CI: 0.7 to 7.1), attending the hospital in <2 days of symptom onset due to critical illness (AOR: 4.7; 95% CI: 1.2 to 17.8) and hospital admission (AOR: 3.4; 95% CI: 1.2 to 9.8). CONCLUSIONS: COVID-19 positivity was observed in more than one-third of patients with suspected COVID-19 attending selected hospitals. While managing such patients, the risk factors identified for higher death rates should be considered.


Subject(s)
COVID-19 , Adult , Comorbidity , Female , Hospitalization , Humans , Male , Middle Aged , SARS-CoV-2 , Sentinel Surveillance
18.
BMJ Open ; 11(11): e053768, 2021 11 29.
Article in English | MEDLINE | ID: covidwho-1541885

ABSTRACT

OBJECTIVE: To estimate the proportion of SARS-CoV-2 and influenza virus coinfection among severe acute respiratory infection (SARI) cases-patients during the first wave of COVID-19 pandemic in Bangladesh. DESIGN: Descriptive study. SETTING: Nine tertiary level hospitals across Bangladesh. PARTICIPANTS: Patients admitted as SARI (defined as cases with subjective or measured fever of ≥38 C° and cough with onset within the last 10 days and requiring hospital admission) case-patients. PRIMARY AND SECONDARY OUTCOMES: Proportion of SARS-CoV-2 and influenza virus coinfection and proportion of mortality among SARI case-patients. RESULTS: We enrolled 1986 SARI case-patients with a median age: 28 years (IQR: 1.2-53 years), and 67.6% were male. Among them, 285 (14.3%) were infected with SARS-CoV-2; 175 (8.8%) were infected with the influenza virus, and five (0.3%) were coinfected with both viruses. There was a non-appearance of influenza during the usual peak season (May to July) in Bangladesh. SARS-CoV-2 infection was significantly more associated with diabetes (14.0% vs 5.9%, p<0.001) and hypertension (26.7% vs 11.5%, p<0.001). But influenza among SARI case-patients was significantly less associated with diabetes (4.0% vs 7.4%, p=0.047) and hypertension (5.7% vs 14.4%, p=0.001). The proportion of in-hospital deaths among SARS-CoV-2 infected SARI case-patients were higher (10.9% (n=31) vs 4.4% (n=75), p<0.001) than those without SARS-CoV-2 infection; the proportion of postdischarge deaths within 30 days was also higher (9.1% (n=25) vs 4.6% (n=74), p=0.001) among SARS-CoV-2 infected SARI case-patients than those without infection. No in-hospital mortality or postdischarge mortality was registered among the five coinfected SARI case-patients. CONCLUSIONS: Our findings suggest that coinfection with SARS-CoV-2 and influenza virus was not very common and had less disease severity considering mortality in Bangladesh. There was no circulating influenza virus during the influenza peak season during the COVID-19 pandemic in 2020. Future studies are warranted for further exploration.


Subject(s)
COVID-19 , Coinfection , Influenza, Human , Orthomyxoviridae , Adult , Aftercare , Bangladesh/epidemiology , Coinfection/epidemiology , Humans , Influenza, Human/complications , Influenza, Human/epidemiology , Male , Pandemics , Patient Discharge , SARS-CoV-2 , Tertiary Care Centers
19.
Heliyon ; 7(11): e08455, 2021 Nov.
Article in English | MEDLINE | ID: covidwho-1525795

ABSTRACT

The rapid and early detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections is key to control the current Coronavirus disease 2019 (COVID-19) pandemic. The present study was conducted to clinically evaluate a rapid diagnostic test (RDT) kit, Standard Q COVID-19 Ag Test (SD Biosensor®, Republic of Korea), with reference to the standard real-time RT-PCR for detection of COVID-19 cases in Bangladesh. Nasopharyngeal swabs were taken from 900 COVID-19 suspected patients. Among them, 34.11% (n = 307) were diagnosed as COVID-19 cases by RT-PCR assay, of which 85% (n = 261) were also detectable using the RDT. The overall sensitivity and specificity of the RDT compared to RT-PCR were 85.02% and 100%, respectively, regardless of age, sex, and type of SARS-CoV-2 variants. Most of the RT-PCR positive cases (94%) were found within the first five days of disease onset, and the sensitivity of RDT was 85.91% for the same samples. The positive predictive value (PPV) of the RDT was 100%, and the negative predictive value (NPV) was 92.8%. The Cohen's kappa value of 0.882 indicated excellent agreement between the RDT and RT-PCR assays. The findings of this study showed the potential use of SARS-CoV-2 antigen-based RDT to expedite the diagnostic process and onward COVID-19 management in Bangladesh.

SELECTION OF CITATIONS
SEARCH DETAIL